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Fication is the use of mathematical woof to con irm that a 
program will behave as specified when it is executed. Formal verification 
can produce a much higher level of confidence in a program than testing. 
Nonetheless, formal verification requires large amounts of skill, human time, 
and computer time, so it would be impractical to verify formally an entire 
Ada program for a typical embedded computer applicaGion. 

We propose an integrated set of tools called a validation environment to 
support the validation of Ada programs by a combination of methods. The 
validation environment exploits the Ada distinction between module interfaces 
and module implementations to validate large Ada programs module by module. 
The proposed validation environment is called the Modular Ada Validation 
Environment, or MAVEN. MAVEN does not yet exist, nor have efforts begun to 
construct it. Rather, MAVEN is our vision of the context in which Ada formal 
verification should be applied. A more complete discussion of MAVEN can be 
found in [ 1 I .  

Our vision of  MAVEN is based on several requirements that we have  
identified for the validation of’ Ada programs. These requirements are based 
or1 the recognition that Ada programs for mission-critical applications ere 
large, that skilled software engineers a r e  in short supply, that tile 

construction of a verifier is an expensive undertaking, and that the use 0:’ a 
verifier may be time consuming. Our requirements are as follows: 

1. Formal proofs should not be based on the behavior of  a particular 
implementation. 

2. It should be possible to validate a large program module by module. 

3 .  For typical mission-critical applications, verification will have to be 
integrated with other forms of validation. 

4. It should be easy to request the proof of certain critical properties 
which, while they do not imply correctness of a module, significantly 
raise our confidence in its reliability. 

See [ 2 ]  for a more complete discussion o f  these requirements. 
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When software engineers use the term "validation and verification," they 
Usually do not have formal verification in mind. To avoid confusion, this 
Paper U L ~ S  the terms validation and verification in two distinct and precise 
senses: 

Verification is the use of formal proof, checked by machine, to 
establish properties of a program's run-time behavior. 

Validation is the process of increasing onels confidence in the 
reliability of a program. Formal proof is one of many methods 
for validating software. 

Confusipn may also arise from our use of the term environmes. Ada 
Programming Support Enviroriments ( A P S E ' S )  already exist, and have functions 
that overlap those we propose for a validation environment. We do not 
envision MAVEN a s  a full A P S E  or as a tool set independent of  an A P S E .  
Rather, we view MAVEN as an integrated tool set embedded within an A P S E .  It 
can be thought of as a tfsubenvironment.*l Many A P S E  tools, including an Ada 
compiler, may be used both for validation and f'or other purposes. 

1 Integration of Multiple Validation Methods 

One reason for validating programs module-by-module is so that different 
modules can be validated in different ways. There are many software unit 
validation methods, all of which have been used successfully in the past. 
These include: 

- formal proof generated with machine assistance and checkea by machine 

- informal proof carried out by hand 

- code walkthroughs 

- unit testing 

- acceptance of a software component as trustworthy, based on experience 
using the same component in a previous system 

It is not necessary for a project to choose one of these validation methods 
for use throughout a program. Given the right framework, different methods 
can be combined in an effective symbiotic relationship to ensure the quality 
of a system. 

While formal verification is the most effective means of ensuring 
consistency between a program and its specifications, it has limitations, 
These include the problem of validating that the specifications themselves 
specify what the customer wants; and the cost -- in both machine time aiid the 
time of skilled personnel -- of developing arid checking the proof'. l'tre 
manufacture of Software, like any manufacturing process, entails a tradeoff 
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between cost and level of quality assurance. In some programs there are 
modules fo r  which any form of validation less powerful than formal proof 
would be socially irresponsible. Sometimes the same program also contains 
many modules for which formal proof would be a wasteful misallocation of  
resources. 

Furthermore, there may be some modules that cannot be verified because 
they use features of the language for which there are no proof rules. 
Features may be excluded from the "verifiable subset" of Ada even if there 
are occasional legitimate uses for such features. Such legitimate uses can 
be isolated in modules that are validated by some means other than f'ormal 
proof. In particular, low-level features of the Ada language are inherently 
machine dependent and thus not characterized by proof rules. Low-level 
features can be Isolated in interface modules, allowing the rest of a system 
to be validated by formal proof. 

Many factors combine to determine the most appropriate form of  
validation for a module. The cost of formal proof must be compared with the 
possible impact of an error in the module. Low-level, target-dependent 
interface modules might best be validated by informal proof. For certain 
hard-to-specify modules, for e ample a graphics display builder whose desired 
output is specified pictorially, testing might be not only the cheapest, but 
also the most reliable form of validation. For modules that are not 
particularly critical, arid for which test drivers would be difficult to 
write, code walkthroughs might be most appropriate. Software might simply be 
trusted (until integration testing) if it has been extracted from a working 
system in which it has functioned reliably. 

To ensure complete coverage, different forms of validation cannot be 
combined haphazardly. There must be a unifying discipline. One of the 
functions envisioned for MAVEN is to provide such a discipline. 

2 Validation Libraries 

The Ada language was designed to facilitate the construction of' tiulje 
programs. A pervasive theme in the design of the language is the division of 
a program into units that can be understood individually yet checked f o r  
consistency with each other. If this theme is extended from unit compilation 
to unit validation, one unit of a program can be changed and revalidated 
without revalidating the rest of the program. This is especially important 
during program maintenance. 

Module-by-module validation of a large program can be achieved in the 
same way as module-by-module compilation. Compilation of an Ada program unit 
consists not only of code generation, but also consistency checking. A 
unit's syntactic specification is compiled before either the unit's body or 
any external uses of the unit. This compilation puts information about the 
syntactic spccification into a Ijjram library. Later, when either the 
unit's body or an external use of theynit is compiled, this information is 
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retrieved from the program library and used for compile-time consistency 
checks. 

The consistency checks that occur during compilation are limited to the 
information found in a unit's syntactic specification, such as the number, 
types, and modes of subprogram parameters. Except for this limitation, 
however, they are analogous to the checks that occur during unit validation. 
Just as a unit has a syntactic specification that is checked during 
compilation, it has a semantic specification that is checked during 
validation, Just as syntactic specifications are recorded in a program 
library, semantic specifications are recorded in a M A V E N  validation library. 

Semantic specifications are textually embedded in Syntactic 
specifications in the form of structured comments like those found in Anna 
C31. This unifies the notions of syntactic and semantic specifications. 
When MAVEN is directed to compile a specification, it invokes the Ada 
compiler to place the syntactic specification in the program library. If no 
compile-time errors are found, the semantic specification is then extracted 
from the structured comments and added to the validation library. 

2.1 Validation Order 

To facilitate compile-time consistency checks, the Ada language 
restricts tht order in which units may be compiled. M A V E N  imposes analogous 
restrictions 'm the order of' validation, Specifically, a module's semantic 
specification must be entered into the validation library before the 
implementation or any use of the module is validated, Then the 
implementation and each use of the module may be validated in any order. 
Validation of' the implementation establishes that the body fulfills the 
semantic specif;cation. Validation of a use of the module involves assuming, 
while validating the using module, that the semantic specification is 
correctly implemented. This assumption is permitted as soon as the semantic 
specification is entered into the validation library, even before the body 
h a s  been demonstrated to fulfill the semantic specification. (This is 
analogous to the .;ompilation of a subprogram call after the subprogran 
declaration has bet,: compiled but before the subprogram body has been 
compiled.) It implies that validation of one unit can proceed considering 
only the specifications of the units it invokes, without considering their 
bodies. This is the essence of nodule-by-module validation. 

0 

Some program units may be validated by fiat. That is, after a code 
walkthrough or simply on the basis of trust, a unit may simply be decreed to 
be llvalidated." This still must be done explicitly, by a request to MAVEN, 
and the usual validation order rules must be obeyed. In particular, a unit 
may not be decreed to be validated before the specifications it is meant t o  
fulfill have been entered into the program library. 
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2.2 Revalidation Order 

Just as the Ada language restricts compilation order, it imposes 
recompilation requirements to ensure that consistency checks have always been 
performed on the latest version of a program. If a syntactic specification 
is recompiled, all consistency checks based on the old syntactic 
specification are rendered invalid. The corresponding body and all uses of 
the unit must then be recompiled so that the consistency checks may be 
repeated with respect to the new syntactic specificatior.. 

MAVEN imposes analogous revalidation requirements. If a module's 
semantic Specification is changed, both the implementation and all uses of' 
the module must be revalidated if they have already been validated. This is 
Televant during program development and program maintenance. 

In program development, failure to validate a body may mean either that 
the body does not correctly implement the corresponding logical specification 
or that the logical specification itself is incomplete. In the first case, 
the body can be corrected and validated. In the second case, the logical 
specification must be modified and all other units using that logical 
specification must be revalidated. This may require still further 
modifications and revalidations. 

In program maintenance, revalidation requirements indicate which parts 
of a large program are potentially affected by a change. This can reduce or 
eliminate the "ripple effect" typically resulting from a change to a working 
program. All possible implications of the change will be flushed out by the 
ensuing round of revalidations, assuming the revalidation is sufficientlv 
thorough. (If the revalidation is by unit testing, this process amounts to 
regression testing. Rather than blindly repeating a!l tests, however, we use 
validation dependency relationships to identify the tests that might possiuly 
have been affected by the change.) 

A unit validated by fiat is subject to the same revalidation 
requirements as any other unit, even if revalidation consists onl) of 
reissuing tile decree by which the unit was originally validated. T r i i s  
encourages software engineers to consider whether the original decree is 
still valid given the new specifications. For example, it may be discovered 
that an off-the-shelf package originally thought to be applicable to the 
current application is inappropriate given the revised specifications. 

2.3 Other Information in the Validation Library 

A validation library contains information besides the seroantic 
specifications of program units. A validation plan can be entered into the 
library in advance, stipulating how a unit will b e  validated once it is 
written. The validation library also records which units have been 
validated, and according to which validation plans. 

-- 
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Each module may hive  its own validation plan, The plan Specifies the 
validation method applied to the unit (testing or formal proof, for example) 
and the details of the validation criteria (which files contain the test 
driver or test data, algorithms for evaluating test results, or which 
Properties are to be proven, for example). A validation pian may specify 
several rounds of validation, all of which must succeed for th? unit t o  be 
considered validated. For example, a plan may call for testing to find and 
eliminate obvious errors, followed by formal proof to ensure the absence of' 
more subtle errors. No one round of validation need provide complete 
coverage of the unit's semantic specification. Some parts of a unit's 
Semantic specification may be proven valid, some valiaated by testing, and 
Some simply assumed to be valid, for example. 

Besides allowing MAVEN to enforce validation and revalidation order 
dependencies, the data kept in the validation library allows MAVEN tools to 
generate reports on the progress of system validation to date. The reports 
indicate which units have been validated and how rigorously. Duririt: 
development, validation of units can be tracked and compared with schedbles. 
When an error arises, information about the validation methods applied to 
each unit and the properties validated for each unit can t-,elp pinpoint 
suspect modules. Tire revalidation implications of a proposed change can 
quickly be estimated. 

3 Other Components of a Validation Environment 

A verifier is only one of the tools that a validation environment should 
provide. We have already mentioned the need for a validation library. This 
implies the need for library management tools; incluc'ns tyre 
report-generation tools diacussed above. Other tools can assist in L::#> 
writing of specifications, the retrieval of reusable software from A large 
catalogue, and the execution and analysis of tests. 

Formal specifications are at the heart, of M A V E N ,  but they are difficult 
for the typical software engineer t o  write. Therefore MAVEN must s u p p l y  
tools to help the software eilgiceer express h i s  intent. These tools a r e  
collectiiely called the specification-writer's assistant.. One component or' 
the specification-writer's assistant is a knowledge-based too; that will 

--- 

construct formal specifications based on a dialogue vJith the user. The 
specification-writer's azsistant also includes an interpreter for a logic 
programming language, similar to PROLOG bi;t providing the higher level of 
data 3bstraction found in the Ada language. Tnis t oo l  can be used for rapid 
prototyping, to test specifications as they dre written. 

The Ada language 1s meant to encourage the reuse of general-purpose 
software components. This approach can only have a significant impact or1 

software development costs if there is a large xorpiq of general-purpose 
software avdilable for reuse; but such a large corpus pr.esents an awesome 
informdtion-retrieval problem. While software retrieval is not usua'liy 
+,..ought of as a qralidatjw problem, Pl.atek [ 4 1  has rioted that forlilal 
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Specifications and verification can form the basis of a retrieval tool. In 
ri 

addition to a validation library, MAVEN might include a catalogue of 
general-purpose, reusable software components, all of which have been 
formally specified. Given the semantic specification of a module required i n  
the design, a MAVEN tool would search the catalogue for reusable components 
that can be proven to have compatible specifications. 

c 
Because testing is the most frequently used validation method, MAVEN 

contains tools scecifically supporting testing. These include tools to 
generqte subprogram stubs, tools to generate test drivers, tools to generate 
test data, and tools to analyze test results, All of these tools can base 

validation library. For embedded applications, there should be saftware 
simclation tool:, and tools providing interfaces with hardware mockups. A 
related tool would administer tests automatically, based on the validation 
plans found in ths validation library. Such a tooi codld also revalidate 
those units validated entirely by testing, whenever revalidation i s  
required. In essence, this automates regression testing. 

. their outputs at least in part on the semantic specifications found in the 

4 MAVEN and the Software Life Cycle 

MAVEN tools are primarily conceraed with unit validation. This can l e a d  
to the impression that the benefits of MAVEN are primarily reaped during the  
unit validation stage of the life cycle. In fact, the use of MAVEN imposes a 
discipline on software development and provides benefits throughout the 
software life cycle. This section walks through a typical waterfall model o f '  
tile life cycle and describes the impact of MAVEN on each stage. 

4.1 Requirenents Analysis 

The s !ec  i f rca t ion-hr i ter I s  a? si s t an t supports the formal express i o f .  d 1' 
requirements. Requirement j can be entered into a new MAVFN validation 
library as the semantic specifications of the main program and of  tdsks 
dcclared in library packages. These formally stated requirements can be 
checked for consistency using a verifier. They may later become the bdsis 
foi- design verification and code verification. An integration-testing p l a n  
may be derived from the formal requirements and stored in the validatiorl 
library until soft.wa;e integration time. 

4.2 Design 

During high-level design, the modular decomposition of a system i s  
determined and the specifications of each module arc written. Algorithms fur 
top-level modules may also be written. MAVEN can play four roles at this 
stage -- design documentation, recording of unit validation plans, 
software-component retrieval, and design verification. 
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Design documentation consists of entering the semantic specifications 
for each design module into the validation library. The specification- 
Writer's assistant again comes in handy here. The semantic specifications 
entered at this staye become the basis for later verification of module 
bodies. The appropriate time to formulate unit validation plans is just 
after unit semantic specifications have been identified. One of the 
responsibilities of an Ada designer is to look for existing software that can 
be incorporated in a design. As noted tarlier, formal specifications might 
provide the basis for software automated software retrieval. The top-level 
algorithms of a high-level design can expressed in executable Ada code 
verifiable in the same way as lower level modules, Using orrly the 
specifications of the main system modules (the main program and tasks 
declared in library packages), it can be proven that the top-level algorithms 
correctly implement the system specifications. 

4 . 3  Unit Development 

There is not a clear dividing line between design validation and unit 
Validation. The same techniques applied to the top-level rnodules during 
design validation are applied to lower-level modules during unit validation. 
The unit validation plan placed in the validation library during system 
design is retrieved and applied. A round of validation is repeated until it 
is successful, and then the next round specified in the validation plan is 
begun. The validation plan is restarted from the first round any time a 
change is made to the unit, its semantic specification, or the semantic 
specifications of the modules that the unit invokes. 

Validation can uncover implicit assumptions that underlie the correct 
functioning of a module, especially when validation is by formal 
verification. Such assumptions must be added to a module's semantic 
specifications if the module is to be verified. Thus the validation process 
contributes to the development of  complete and up-to-date specifications. 

4.4 Integration Testing 

The main impact of MAVEN on integration testing will be a drastic 
reduction in integration problems. The Ada compiler will already have 
checked all units for syntactic consistency with each other. MAVEN will 
already have checked all units for consistency with their own semantic 
specifications and the semantic specifications of the modules they invoke. 
The few integration problems that remain will arise from incomplete module 
specifications (for example, specifications that address functional 
requirements but not performance requirements) and insufficiently rigorous 
unit validation (for example, use of code walkthroughs as the sole means of 
validation or the use of tests that do not provide adequate coverage). 
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4.5 Maintenance 

MAVEN will reduce the costs and risks of program maintenance. Both the 
data MAVEN collects during program development and the discipline MAVEN 
imposes on program modification will help confine the "ripple effect" of a 
change. MAVEN will also keep documentation up to date after changes have 
been made. 

The most frequent problem associated with program maintenance is a 
change that violates an implicit assumption upon which a different part of 
the program depends. This problem is less likely to arise when using MAVEN 
for two reasons. First, the validation process applied during program 
development has served to make implicit assumptions explicit. The 
documentation will warn the maintenance programmer right from the start that 
certain changes must be disallowed unless further changes are made in other 
modules. Second, if the semantic specification of a module is changed, MAVEN 
will enforce the revalidation of all modules that may be affected by the 
change. The revalidation dependencies alone clarify the potential impact of 
a contetiplated change. The actual revalidation, which may follow the 
original unit validation plan created during the initial design, leads the 
maintenance programmer to discover which potential impacts are truly 
significant, to revise the affected modules, and to validate the revisions. 
If the revised modules can themselves affect other modules, revalidation of 
these other modules will also be required. If sufficiently rigorous, 
revalidation anticipates and averts all possible ripple effects, 

MAVEN keeps documentation current during program maintenance in the same 
way that it does so during initial development. Every time a unit's semantic 
specification changes, MAVEN records the fact. This makes the next rourid of 
maintenance easier. 

5 Conclusions 

We have described our vision of a Modular Ada Validation EnvirollniL:it, 
MAVEN, to propose a context in which formal verification can fit into t t ~ c  
industrial development of Ada software. While proof of correctness i s  
unquestionably the most rigorous and effective form of validation, there are 
contexts in which it is inappropriate. Nonetheless, formal proof cd I be 
effectively combined with other validation methods to raise confidence 1 : i  2 

program's reliability. 

MAVEN offers software engineers a continuum of more and less rigorous 
validation methods. This continuum makes a wider variety of validation 
methods available t o  a larger group and applicable to a greater number of 
modules. MAVEN provides a unifying framework in which different validation 
methcds may be applied to the same progr'am. By exposing software engineers 
t o  more rigorous methods than thcje they may be familiar with, MAVEN 
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encourages learning and promotes wider use of formal methods in the 
situations where they are appropriate. 

MAVEN includes components that are at and beyond the state of the art. 
We do not propose that construction of MAVEN in its er.+Arety should start 
today. Rather, MAVEN can serve as framework for the specification, design, 
and construction of individual tools, including a verifier. If such tools 
are viewed as eventual MAVEN components and if the MAVEN philosophy is kept 
in mind when the tools are specified, then MAVEN can be assembled over a 
number of years from independently developed components. 
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